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Abstract

Recent advances in asset pricing|the reduced-form approach to pricing risky debt and

derivatives|are used to quantitatively evaluate several proposals for mandatory bank issue of

subordinated debt. We �nd that credit spreads on both �xed and oating rate subordinated

debt provide relatively clean signals of bank risk and are not unduly inuenced by non-risk

factors. Fixed rate debt with a put is unacceptable, but making the putable debt oating

resolves most problems. Our approach also helps to clarify several di�erent notions of \bank

risk."
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1 Introduction

For the better part of two decades economists have debated the merits of regulations that
would require a minimum level of subordinated debt in a bank's capital structure. Proponents
view a subordinated debt requirement as a reform that can resolve agency problems created
or exacerbated by federal safety net guarantees. Typically, proposals for a sub-debt require-
ment cite increased market discipline and reduced taxpayer exposure to loss as the primary
bene�ts. Moreover, proposals such as Wall (1989) and Calomiris (1997) attempt to resolve reg-
ulator principal-agency problems through features in their proposed sub-debt structures that
force earlier o�cial recognition of a institution's insolvency. Policymakers, too, have begun to
seriously consider subordinated debt proposals. Both the U.S. and European Shadow Financial
Regulatory Committees have their own proposals, and the Federal Reserve System convened a
Study Group on Subordinated Notes and Debentures (1999). A joint report by the Fed and
Treasury mandated by the Financial Services Modernization Act of 1999 (Gramm-Leach-Bliley)
concluded that \existing evidence supports e�orts to use subordinated debt as a way to en-
courage market discipline" and also held out the possibility that, pending further research, \the
Secretary or the Board may recommend such a policy to Congress." (Board of Governors of
the Federal Reserch System and the Secretary of the U.S. Department of the Treasury (2000)).
Furthermore, section 121 of the GLB Act in fact requires that large holding companies control-
ling a �nancial subsidiary must have at least one issue of rated debt outstanding (albeit not
necessarily subordinated).

Proponents of subordinated debt have suggested that it will increase market discipline in
two ways. First, the interest rates on debt issues will provide information to supervisors, in
some proposals triggering prompt corrective action, in others merely providing supplemental
information. This is referred to as indirect market discipline, as it relies on the proper response
by the supervisors. Second, subordinated debt provides direct market discipline, as banks taking
riskier strategies face higher debt prices, and thus �nd funding more di�cult. They also face
direct pressure from existing bond holders.

The literature on subordinated debt has addressed these issues separately. Theoretical stud-
ies by Winton (1995), Hart and Moore (1995), Bolton and Scharfstein (1996), and Dewatripont
and Tirole (1994) have explored the direct incentive e�ects, while empirical studies by Avery,
Belton, and Goldberg (1988), Flannery and Sorescu (1996), and Evano� and Wall (2001) have
looked at how bank risk a�ects subordinated debt yields. Berger, Davies, and Flannery (2000)
study how market and supervisory assessments of risks di�er, while Maclachlan (2001) and
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others have questioned the ability of regulators to credibly apply indirect discipline. Levonian
(2001) assesses the relative merits of subordinated debt against other types of stricter capital
requirements. Thomson and Osterberg (1991) show how even in the absence of information and
incentive e�ects, subordinated debt reduces taxpayer exposure to loss.

There has been virtually no work, however, on striking the proper balance between direct
and indirect market discipline, nor on the possible trade-o�s between the two, despite the very
di�erent weights placed on the two in di�erent proposals. Short-term debt would require the
bank to constantly re-enter the market and prove its worth, but it is unclear as to whether the
debt would be as sensitive to credit changes as longer-term debt. Making the debt putable would
remove discretion from regulators, but might interfere with the spread's signaling properties. At
this point we have no way to quantitatively assess these trade-o�s, or consequently to assess the
di�erent proposals.

Of course, properly assessing the signal-to-noise properties will illuminate not only the trade-
o�s between di�erent designs, but also the pitfalls of inferring risk given any particular proposal.
Thus, to what extent does the standard approach of looking at the spread between the yield
on sub debt and comparable Treasury bonds go wrong by ignoring maturity? Would regulators
incorrectly view one bank as riskier merely because it had longer-term bonds? The problem
exists not just across banks but across time as well. To what extent would changes in the risk-
free term structure show up as changes in the credit spread? If we had extensive experience with
a rich market of subordinated debt and associated derivatives, we might answer these questions
with further empirical work. When it becomes a question of security design, however, we need
another route to assess the quantitative e�ects involved.

In this paper we evaluate the information content of subordinated debt under various pro-
posals, using recent advances in asset pricing theory. Because we have a model, we can hold
�xed the underlying risk of the bank and examine how the price (or yield) of subordinated
debt varies with maturity, with the underlying risk-free term structure, and with the addition
of embedded options such as puts. This approach stops short of a full evaluation, as it does not
quantitatively assess the incentive e�ects. For example, while we quantify the information lost
by adding putabiliy, we cannot quantify the bene�t from reducing forebearance. We �nd:

� Credit spreads vary by maturity. In spite of this observation, in ranking banks by their
risk, the maturity of the subordinated debt does not matter much.

� Subordinated debt of very short maturity (under two years) is sensitive to credit shocks,
but the impact of credit shocks among longer-maturity bonds is less apparent.

� If two banks have the same short-term credit spread, their inherent risk may be quite
di�erent, since other factors of the spread process, such as their mean reversion factors,
could be substantially di�erent. We identify several examples of this.

� Theoretically, many factors besides bank risk can a�ect credit spreads, and identifying a
simple mapping from spreads to risk is nontrivial. We �nd, however, that many of these
extraneous e�ects are not quantitatively signi�cant. For example, changes in the shape of
the risk-free term structure, or in interest rate volatilities do not have a major impact on
credit spreads.
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� When a put is added to a �xed-rate bond, the e�ects of maturity and volatility become
signi�cant. Changes in the put premium dominate the credit spread, so that observed
spreads reect interest rate movements rather than bank risk.

� Adding a put to oating-rate bonds, however, removes most of the e�ect of the risk free
term structure. Credit spreads once again primarily reect bank risk.

From these �ndings we conclude that �xed-rate putable debt should not be adopted. Although
any conclusions for standard �xed-rate debt or putable oating-rate debt are more dependent
on the range of our data and our model speci�cation, our evidence strongly suggests that little,
if any, information is lost by adding a put to oating rate debt. Furthermore, the credit spreads
on �xed and oating putable debt reect primarily credit risk, not changes in the underlying
risk free interest rate.

The paper proceeds as follows. Section 2 briey describes the di�erent subordinated debt
proposals. Section 3 presents a two-factor model for pricing riskless bonds and a three-factor
model for pricing subordinated debt and related derivatives. Section 4 describes the estimation
procedures, and using swap and swaption data, calibrates the two-factor model for riskless bonds.
In addition, we use subordinated bond data to estimate the term structure of credit spreads for
�ve large banks. The resulting estimates for these models are used as benchmark parameters
in the evaluation of the proposals. Section 5 explores the alternative proposals and section 6
compares them.

2 The Di�erent Proposals

A variety of subordinated debt plans have been proposed over the years (see the Study Group
on Subordinated Notes and Debentures (1999) for a summary of many of them), and new plans
are proposed regularly. It would be impractical to examine all of the proposals, and indeed the
di�erences between them often do not directly matter for the pricing questions we take up in
this paper. Whether the amount of sub debt issued is tied to total assets or deposits, how much
counts as regulatory capital, or whether banks or bank holding companies issue the debt, won't
directly a�ect the relationships we explore. Such di�erences can have an important indirect
e�ect by changing the risk of the bank, and thus of the sub debt, but this will be subsumed in
the risk factor.

We concentrate on four di�erent proposals which between them span most of the sub debt
plans. First, we look at the standard, noncallable, �xed-rate debt with semiannual coupons.
Because a key question is the impact of maturity on prices, we look at debt maturities of one
through nine years. Secondly, we look at oating rate debt of the same maturities. The debt
would be oating, paying the 3-month LIBOR rate semi-annually.

Next, as in Evano� (1993), we add a put feature to the �xed-rate debt. Lastly, we consider
oating-rate debt putable at par. Since a put on �xed-coupon debt will sometimes be exercised
solely because of shifts in the term structure, Wall (1989) argues that putable oating-rate debt
may give a cleaner signal of credit events.

These di�erent assets will be priced based on model parameters calculated for �ve di�erent
banks which had enough outstanding issues of subordinated debt to allow calibration: Chase,
JP Morgan, Wachovia, Bank One, and Bankers Trust.1

1For a discussion and some evidence on the question of whether the bank or the bank holding company should
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3 Pricing Credit Derivatives

The methods we use for pricing the proposed subordinated debt instruments consist of three
parts. First, for modeling the underlying risk-free term structure, we use a standard two-factor
Heath Jarrow Morton model, which matches the initial term structure and allows the future
dynamics of the term structure to evolve with di�erent levels, slopes, and curvatures.

Second, to model risky debt, we use a \reduced form" approach, where defaults occur at
surprise stopping times.2 In this framework, the default process of risky debt is modeled directly
rather than through the asset process for the �rm, and assumptions are made regarding the
recovery rate in default. Combining the default process and recovery rate with assumptions on
the riskless term structure process leads to models for risky debt and their derivative products.

Third, the methodology used to price the options embedded in some proposals requires
pricing American options present in putable debt. Since we have a three-factor model, we resort
to simulation methods of Longsta� and Schwartz (2001) to price the embedded options.

The model that we use for pricing credit sensitive claims incorporates signi�cant information
on the term structure of interest rates, where much information is available, and is less demanding
on the term structure of credit for an individual bank. In particular, the riskless term structure
can readily be observed, and volatility information, which is embedded in the prices of a wide
array of liquid derivative prices such as caps, oors, and swaptions, can easily be extracted. In
contrast the credit information for a particular bank typically comes in the form of a few prices
of traded bonds and default swap quotations. Given this sparse information, the model for the
spread is less demanding.

Speci�cally, for the term structure of interest rates we adopt a two-factor Heath, Jarrow, and
Morton (1992) model where forward rates are initialized to the observed values, and volatilities
are humped functions of their maturities, consistent with empirical evidence (Amin and Morton
(1994)). In contrast, credit spreads are not initialized to given values. Rather, they are generated
by an additional factor. The dynamics of the short credit spread are speci�ed as a mean reverting
process, correlated with interest rates. Given the dynamics of the riskless term structure and the
short credit spread, a three-factor model for the risky forward rate is developed. Using market
prices of risky debt, the parameters of the short credit spread can then be calibrated so that
the model produces prices of risky debt that are close to market prices. The resulting model we
obtain for the term structure of credit spreads is exible enough to permit upward, downward,
and humped shapes.

3.1 Pricing Riskless Bonds

Partition the time interval into increments of width �t years and label the time periods by
consecutive integers. Let f(t; T ) be the forward rate at period t, for the time period [T; T + 1].

issue the sub debt, see Jagtiani, Kaufman, and Lemieux (2001).
2This contrasts with more fundamental models based on Merton (1974) where default is endogenized, but

which have been less successful at pricing risky debt. For examples of this approach see Kim, Ramaswamy, and
Sundaresan (1993), Longsta� and Schwartz (1995), and Nielsen, Sao-Requejo, and Santa-Clara (1993). Structural
models are attractive on theoretical grounds, as they link the valuation of �nancial claims to economic fundamen-
tals. They have proved to be hard to implement, however, because of the di�culty in valuing the �rm's assets,
characterizing and measuring the �rm's volatility, and because of the complexity of the capital structure of the
�rm. Moreover, as shown by Eom, Helwege, and zhi Huang (2000), these models tend to generate spreads that
are too low for high-quality borrowers.
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Hence, expressed in years, the actual time is [T�t; (T + 1)�t]. The forward rates, under the
risk neutral equivalent martingale measure, are updated as follows:

f(t+ 1; T ) = f(t; T ) +
2X

n=1

[�fn(t; T )�t+ �fn(t; T )
p
�tZ

(n)
t+1] (1)

where fZ(n)
j ; n = 1; 2g are independent standard normal random variables and the volatility

structures are given by:

�f1(t; T ) = aT�t1 b1 (2)

�f2(t; T ) = aT�t1 b2 + aT�t2 c2; (3)

where aj = e��j�t for j = 1; 2:
These volatility structures imply that the volatility function for forward rates can be a

humped function of the maturity, which is consistent with empirical evidence. The drift terms
in equation (1) are completely determined by the volatility structures and are given by the
discrete version of the Heath, Jarrow, and Morton (1992) restriction, which is:

�fn(t; T ) =
�t

2
�2fn(t; T ) + �fn(t; T )

T�1X
j=t+1

�fn(t; j)�t; n = 1; 2 (4)

Proposition 1

(i) If the dynamics of the forward rates are given by equation (1), with the volatility structures
given by equations (2) and (3), and the initial forward rate curve ff(0; T )jT = 0; 1; 2; � � �g, given,
then the dynamics of the term structure can be represented by a process Markovian in two state
variables, r(t) and u(t). The dynamics of these state variables are:

r(t) = f(0; t) + a1(r(t� 1)� f(0; t� 1)) + b(t) + c1u(t) + d1
p
�t�t (5)

u(t) = a2u(t� 1) + a2
p
�t�t; (6)

where b(t) is a time varying deterministic function de�ned in the appendix and

d1 =
q
(b2a1 + c2a2)2 + (b1a1)2

c1 = (a2 � a1)c2;

In addition, u(0) = 0 and the two random variables, �t and �t, are standard normal random
variables with correlation �1 =

b2a1+c2a2
d1

.
(ii) The price at time t of a riskfree zero coupon bond that pays $1 at time t+n, P (t; t+ n), is:

P (t; t+ n) = e�An(t)�Bnr(t)�t�Cnu(t)�t (7)

where A1(t) = 0, B1 = 1, C1 = 0, and

Bn = 1 +Bn�1a1

Cn = c1Bn�1 + a2Cn�1

An(t) = An�1(t+ 1) +Bn�1[f(0; t+ 1) + b(t+ 1)� a1f(0; t)� a1(f(0; t) + b(t+ 1)]�t

�1

2
[(Bn�1d1 + Cn�1�1a2)

2�t3 + (Cn�1a2)
2(1� �21)�t

3]:
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Proof: See Appendix.
In this representation, the dynamics of interest rates follow a mean reverting process, where

the long run average of the short rate is itself stochastic, following its own mean reverting
process. Similar processes have been considered by Jegadeesh and Pennacchi (1996) and by Hull
and White (1994). The advantage of this process over a simpler one-factor extended Vasiceck
model is that forward rates are not perfectly correlated, and the volatility structure of forward
rates can be humped.

3.2 Pricing Risky Bonds

Du�e and Singleton (1999) price risky bonds under the assumption that if a default occurs,
recovery is proportional to the predefault market value of the debt. Under this assumption they
show that the price of a defaultable bond can be obtained as the martingale expectation of the
promised face value and coupons, where all payo�s are discounted by a speci�c discount rate
that embodies the riskless time value, the loss arrival rates, and the fractional recovery.

Speci�cally, assume the time to default is generated by a Cox process.3 The intensity of the
process, under the risk neutral measure Q, is �(t). Hence, the chance of default over some small
time interval, �t is 1� e��(t)�t ' �(t)�t. Let � be the random variable representing the period
in which default takes place. If default occurs, the �rm recovers a fraction, �(t), of the value
that the bond would have had, if there had been no default. Let G(t; T ) represent the period
t value of a risky bond that promises to pay $1 at period T . Then the date t price of a risky
bond that matures in n periods, assuming the bond has not defaulted, is:

G(t; t+ n) = P (t; t+ 1)EQ
t [G(t+ 1; t+ n)]

= e�r(t)�t[(1 � �(t)�t)�EQ
t [G(t+ 1; t+ n)j� > t+ 1] +

�(t)�t�EQ
t [G(t+ 1; t+ n)j� = t+ 1]

= e�r(t)�t[(1 � �(t)�t) + �(t)�t�(t)]EQ
t [G(t+ 1; t+ n)j� > t+ 1]

Notice that [(1 � �(t)�t) + �(t)�t�(t)] ' e��(t)�t(1��(t)) : Denote s(t) = �(t)(1 � �(t)) , then
the risky bond can be written as:

G(t; t+ n) = e�(r(t)+s(t))�tEQ
t [G(t+ 1; t+ n)j� > t+ 1]:

Indeed, Du�e and Singleton's valuation formula for risky bonds is identical to the formula for
risk-free bonds, with the exception that the riskless rate, r(t), is replaced by an adjusted short
rate given by R(t) = r(t) + s(t), where the spread, s(t), reects the local default rate and the
fractional loss rate given a default. The advantage of this approach is that once the higher rate
is used as a discount rate, valuation can proceed as if the claim never defaults. This result
makes it possible to transfer all the standard term structure models for default-free bonds to
risky bonds, merely by parameterizing R(t) instead of r(t).

Using the reduced form modeling approach with fractional recovery implies that to price
a risky bond, we need to specify the process for interest rates and for the short credit spread,
under the risk neutral measure. In our approach, the interest rate process, under the risk neutral

3Roughly speaking, a Cox process is a Possion process with a stochastic intensity parameter. The form used
in �nance di�ers slightly from the standard form. See Lando (1998).
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measure, is given by our two-factor discrete time model, given in equations (5) and (6), where
the initial yield curve is given, and the volatility structure for forward rates is humped. The
dynamics of the short credit spread process that we adopt is given by:

s(t+ 1) = �0 + �1s(t) + �2(�t+1 � �3)
2;

where �t is a standard normal variable with Cor(�t; �t) = �2 and Cor(�t; �t) = �3 . The full
model for establishing risky forward rates is then:

r(t+ 1) = f(0; t+ 1) + a1[r(t)� f(0; t)] + b(t) + c1u(t) + d1
p
�t�t+1 (8)

u(t+ 1) = a2u(t) + d2
p
�t�t+1 (9)

s(t+ 1) = �0 + �1s(t) + �2(�t+1 � �3)
2: (10)

In this representation, the short credit spread is mean reverting, persistent, and if the con-
straints �0 � 0, �1 � 0, and �2 � 0 are imposed, then the spread does not become negative.
It may be thought of as an autoregressive process with noncentral �2 shocks. In addition, the
short spread can have arbitrary correlation with the two state variables characterizing interest
rates. The correlation between the short spread and interest rate , �rs, say, is given by:

�rs =
�p2�3�2q
1 + 2�23

:

Hence, �3 inuences the correlation between interest rates and spreads. Further, �3 controls the
skewness of the short spread; if its value is positive, then negative innovations on �t+1 have larger
inuences on the short spread than equivalent positive innovations. In this sense, �3 controls
the skewness of the spread distribution.
Proposition 2

If the interest rate and the instantaneous credit spread, under the risk neutral measure, are
given by (8), (9) and (10), then, risky zero coupon bond prices at date t can be expressed as:

G(t; t+ n) = P (t; t+ n)e�Dns(t)�t�En ; (11)

where

Dn = 1 +Dn�1�1; D1 = 1

En = En�1 +Dn�1(�0 + �2�
3
3)�t+

1

2
ln(1 + 2Dn�1�2�t)

�(Bn�1d1
p
�t�2 + Cn�1d2

p
�t�3 � 2Dn�1�2�3)2(�t)2

2(1 + 2Dn�1�2�t)
+
1

2
(Bn�1d1 + Cn�1d2�1)

2(�t)3

+
(Cn�1d2)2(1� �21)�t

3

2
� �t3

2
(Bn�1d1

q
1� �22 + Cn�1d2

�1 � �2�3q
1� �22

)2

��t3

2
(Cn�1d2

q
1� �21 � �22 � �23 + 2�1�2�3q

1� �22

)2); E1 = 0

Bn = 1 + a1Bn�1; B1 = 1

Cn = c1Bn�1 + a2Cn�1; C1 = 0:
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Proof : See appendix.
Knowing the zero coupon bond prices, we can obtain the term structure of credit spreads,

which at date t is de�ned as the di�erence between the yields of defaultable and default-free
bonds, and is given by the expression:

s(t; t+ n) = �ln(G(t; t+ n))=(n)� (�ln(P (t; t+ T ))=(n))

=
1

n
ln
P (t; t+ n)

G(t; t+ n)

=
1

n
(Dns(t)�t+En):

It is clear from the above formula that while the credit spread, s(t; t + n), is not explicitly
dependent on the level of interest rates, it is inuenced by the correlation e�ects with the interest
rate process. While the level and shape of the term structure of credit spreads is inuenced by all
the parameters, the way in which shocks to the short credit spread, s(t), are transmitted along
the term structure of credit spreads, is solely determined by the maturity and the parameter �1.

By taking particular di�usion limits of the riskless dynamics, our model can be made to
converge to continuous time di�usions that include the two-factor Hull and White (1993) model.
Similarly, by taking di�usion limits of the credit spread process, particular di�usion limits can
be obtained.4 For our purposes, however, the discrete time models will su�ce.

A special case of the above model occurs when the innovation for the credit event is taken to
be the same innovation that a�ects interest rates. Now the credit spread follows the dynamics:

s(t+ 1) = �0 + �1s(t) + �2(�t+1 � �3)
2: (12)

Equation (12) is a special case of equation (10) where �2 = 1 and �3 = �1. Risky discount
bond prices for this model di�er from the more general model in that the correlation between
interest rates and spread innovations are controlled through �3, and the correlation between the
innovations of the long-run average of the short rate process and the spread innovation is not
required. The correlation between interest rates and credit spreads is controlled by the level of
�3. That is,

�rs = � 2�3q
2 + 4�23

: (13)

When �3 is positive(negative), the correlation is negative (positive).
Notice that if we were to consider two di�erent �rms, this model does not imply that the

credit spreads are perfectly correlated. To see this, denote the credit spread of a second �rm by:

~s(t+ 1) = ~�0 + ~�1~s(t) + ~�2(�t+1 � ~�3)
2: (14)

4For example, if we take

�0�t = �0 + �2(1 + �
2
3)

�1�t = 1� �1

�2

p
�t = �2

�3 = �3;

the short-term spread process converges to a Gaussian mean reverting process.
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The correlation between s(t) and ~s(t) is:

�s~s = � 2(1 + 2�3 ~�3)q
2 + 4�23

p
2 + 4 ~�3

2
: (15)

. The correlation is 1 only when �3 equals ~�3.
Our three-factor model for pricing risky debt has the following properties: credit spreads are

nonnegative and arbitrarily correlated with interest rates, they exhibit skewness, and analytical
solutions are avaiable for all maturities.

3.3 Pricing American Options

Since some of the subordinated debt proposals involve the issuance of derivative contracts, such
as putable bonds, we need pricing mechanisms for such contracts. Longsta� and Schwartz
(2001) provide a simple method for valuing American options using simulation, and we use their
methods. The key to their approach is to use least squares to estimate the conditional expected
payo� to the optionholder from continuation. Since the expectation can be represented as a
linear function of the elements of basis functions, it can be approximated using the �rst M basis
functions. Once the basis functions have been speci�ed, they show how regression methods can
be used to accurately approximate the conditional expectation. Interestingly, Longsta� and
Schwartz show that many applications require only a few basis functions, and that the exact
choice of basis functions is not that material.5

In our application, we have three state variables, from which the entire term structures of
riskless and risky debt can be reconstructed. We used functions of these state variables as
independent variables for the regressions. For the case of put options on coupon bonds, we
computed the price of the underlying risky and riskless bond and added them to the list of state
variables. Simple polynomial functions of these state variables were used for the regressions. Af-
ter some experimentation we ended up using the following variables, fr; r2; r3; s; s2; s3; u; u2; u3g.
The addition of other variables, including cross products of the state variables, did not provide
additional accuracy.

4 Estimating the Parameters for the Credit Spread Model

Next we obtain parameter values by calibrating the model to the available data. We do this in
two steps, �rst obtaining the term structure parameters, and then obtaining the credit spread
parameters. One result of this exercise is a realization that we must be precise about several
things often treated rather cavalierly. Chief among these is the de�nition of the credit spread.
To obtain a consistently de�ned spread across several types of contracts, we restrict ourselves to
the par spread: the di�erence between par yields, calculated as the coupon payment that makes
the value of a newly issued bond equal to par.

5For example, using Hermite, Legendre,and Chebyshev polynomials or even simple powers of the state variable
lead to accurate results.
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4.1 Calibrating the Interest Rate Parameters

To implement the model described above, we �rst estimate the parameters of the two-factor
interest rate process using term structure data.

For constructing the yield curve, we use futures and swap data on LIBOR. This means our
work is not exactly comparable with work that uses the spread over U.S. Treasury yields. The
LIBOR market gives us a richer and deeper set of traded derivatives that make estimating the
volatility structure easier. Swap rates also have some claim to being a reasonable benchmark,
as the market is active and quotes are readily available.6 For the short end of the curve (up to
one-year maturity), we use the �ve nearest futures contracts on any given date. These futures
rates are interpolated, and then convexity corrected to obtain the forward rates for three, six,
nine, and twelve-month maturities. The rest of the yield curve out to �ve years is estimated
using the forward rates bootstrapped at six month intervals from market swap rates. The futures
and swap data are obtained from DataStream.

The data for this study consists of USD swaption prices. Speci�cally, from Datastream,
the swaptions data set comprises volatilities of swaptions of maturities six months, one, two,
three, four, and �ve years, with the underlying swap maturities of one, two, three, four, and �ve
years each (in all, there are 30 swaption contracts). As per market convention, a swaption is
considered at-the-money when the strike rate equals the swap rate for an equal maturity swap.

Like Amin and Morton (1994), Driessen, Klaassen, and Melenberg (2000), Longsta�, Santa-
Clara, and Schwartz (2001), and Moraleda and Pelsser (2000), we estimate model parameters
from cross sectional options data. This means that at any date we �t models to the prices of
swaptions for di�erent maturities and underlying swap expirations. Our objective function is
to minimize the sum of squared percentage errors between theoretical and actual prices using a
nonlinear least squares procedure.

Using data on September 30, 1999, the following estimates were obtained for our two factor
volatility structure:

�1 = 0:044978; �2 = 3:407608; b1 = 0:00014383; b2 = �0:012441; c2 = 0:018797

Figure 1 shows the volatility hump for the forward rate volatilities, and table 1 shows the
percentage errors in the 30 estimated swaption prices. Pricing errors of about 3 percent or
less are deemed reasonable, as this typically corresponds to the bid-ask spread in this market.
Actual market prices of swaptions are quoted in terms of implied Black volatilities and a 3
percent pricing error approximates a one half Black vol. As the table makes clear, the predicted
prices generally fall well within the bid{ask spread.

Figure 1 Here

Table 1 Here

These parameter estimates are used as benchmark values for the analysis that follows.

6For more on pricing swaps and their relation to Treasuries, see Grinblatt (2001),Collin-Dufresne and Solnik
(2001), and Du�e and Singleton (1997). For a discussion of the extent to which swaps have already replaced
Treasuries as a benchmark, see Mengle and Smithson (2001)
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4.2 Calibrating the Credit Spread Parameters

To estimate the remaining parameters of the model requires credit spread information. To obtain
an indication of the parameter values, we estimated the credit spread of �ve di�erent banks.
The data were taken from Bloomberg.7 The terms and prices of these issues on September 30
1999, are shown in Table 2 along with the percentage errors of the �tted prices, which were
obtained by minimizing the sum of squared percentage errors.

Table 2 Here

The values for the credit spread parameters are reported in Table 3.

Table 3 Here

These estimated values are used as parameters for an illustrative case, for which we can then
price a variety of hypothetical debt contracts being considered under various proposals.

Notice that our model �ts the data very well. On a par bond (price of $100) the mean
absolute error from the model is $0.8. This compares with an average bid{ask spread of high{
grade corporate bonds of about $0.2 obtained by Chakravarty and Sarkar (1999).

Table 2 also shows the actual and �tted yields-to-maturity for all the bonds. As can be seen
from the table, the di�erences are relatively small. The errors are symmetric, and the mean
absolute percentage di�erence in prices is 0.87% or 87 cents on a $100.00 bond (median, 0.62%).
For yields, the mean absolute di�erence is 2 basis points. On a per bank basis, the root mean
squared error is 60.66. This compares, for example, with Du�ee's per �rm value of 7.99.

5 Evaluating the Proposals

In this section we use the calibrated model to generate theoretical prices of a variety of subor-
dinated debt contracts that have been proposed. How prices and yields change with bank risk
and nonrisk factors depends on contract design. A good proposal has yields that are sensitive
to risk factors and insensitive to nonrisk factors.

5.1 Spreads for Straight Subordinated Debt

The �rst proposal we consider is �xed-coupon subordinated debt. As an initial base case, �gure
2 shows the credit spread curves for zero-coupon risky bonds of increasing maturities for our
�ve banks.

Figure 2 Here

The credit spreads are both signi�cant and di�er noticeably across banks: the di�erence
between Wachovia and Bankers Trust is over 50 basis points. Although the credit ratings of the
banks in this sample show little variation (all are Moody's A1 or A2), it is nice to note that the
bank with the highest spread is rated A2 and that with the lowest is rated A1. The amount of

7For an analysis of the accuracy and comparability of di�erent sources for bank subdebt pricing, see Hancock
and Kwast (2001).
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information in these rating di�erences is unclear; in fact, while Moody's rates Bank One above
J.P. Morgan (A1 vs. A2), Standard and Poor's ranks Morgan several steps higher (AA- vs. A).

The spread curve also decreases with maturity for all but one bank, but only slightly. Even
in that case however, the �ve basis point spread of Wachovia is far less than the term spread
seen in the LIBOR market on the same date.

For comparative static results, looking at the simpler case of zero coupon bonds is instructive.
Zeroes provide some clear results for how changes in the risk process s(t) a�ect yield spreads. As
the underlying process parameters �1; �2, and �3 change, the risk spread, and how that spread
spread depends on maturity, also changes. Figures 3a-3c plot spread against maturity for values
that encompass the range of parameter values we �nd in the data.

Figure 3a plots the e�ect of maturity on spread for di�erent levels of �1, the mean reversion
parameter. This has a noticeable, but expected, e�ect. For high levels of �1, the yield spread
becomes upward sloping. Conversely, low levels of �1 imply fast mean reversion|so the bank
is expected to be less risky in future, and the spread declines with maturity. With a high �1,
mean revision is slow, and today's high probability of loss compounds over time, increasing the
spread with maturity.

Figure 3b, with results for di�erent values of �2, shows a similar picture. A higher �2
increases both the mean and variance of the process, and for high enough values this leads to
an increasing yield spread.

Figure 3c shows the e�ects of di�erent values of �3. Here the qualitative e�ects are less
noticeable: in all cases the spread has a \u" shape. The most important impact of �3 is on the
correlation of the spread with the risk-free interest rate, which we discuss in more detail below.

A revealing chart plots the sensitivity of the yield spread to changes in the instantaneous
spread s(0). (This is just the derivative of 12). Figure 4 shows this as a function of maturity.
Roughly, this chart shows how much of an increase in the instantaneous failure rate s(0), shows
up in the subdebt spread. The result depends heavily on maturity: less than 10 percent of the
increase shows up in a 10 year bond. Di�erences in �1 matter as well, particularly for shorter
maturities|the e�ect is generally washed out for longer. Thus, maturity has a big impact on a
bond's ability to signal a particular type of risk change, though, as we discuss in section 6, this
is not always the only, or the most relevant, risk to consider.

Zeroes make up a very small proportion of the subordinated debt market (Sironi (2001)
�nds only 1.6 percent of European bank Subdebt issues are zeroes). Most are coupon bonds of
varying maturities. Figure 5 shows the par credit spreads for the risky bonds. They also have
a slight downward slope. Unlike the zero coupon spread curves, these par spreads do depend
on the term structure. Since the term structure at the time was upward sloping, the par credit
spreads are all slightly higher, though with no noticeable change in slope.

Figure 6 shows how the shape of the riskless yield curve a�ects par credit spreads. It shows
the par credit spread for a hypothetical �ve year par coupon subordinated debt issue, based on
the parameter estimates for Chase. The risk free yields make their presence felt: the long end
of the credit spread slopes up or down depending on the slope of the initial term structure. A
careful look at the scale, however, reveals that the di�erence is on the order of two basis points.
The credit spread is insensitive to the risk-free term structure, by these calculations.

The e�ect of a shock to the state variable, s(t), on the par spread depends on the maturity
of the bond, on �1, on the size of the shock to the short credit spread, and on the shape of
the riskless yield curve. The size of the shock is magni�ed by �2 and its distance from �3, and
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its correlation with the riskless interest rate also depends on �3. In terms of the parameters
observed, however, changes in the state variable s(t) do not have a large impact on the credit
spread. Figure 7 shows the changes in credit spread as s(0) varies, given the parameters for the
�ve banks in our sample, assuming a maturity of �ve years. The e�ects are mostly on the order
of less than one basis point.

Any conclusion about the proper design of subdebt cannot be made without a comparison
to other proposals, but these results do bear on the question of subdebt maturity. The answer,
however, depends on the purpose of the debt. If regulators desire only a rough ranking of banks
by risk, perhaps to con�rm or deny examination ratings, maturity does not matter. It is unlikely
that the regulator would misclassify banks by ignoring maturity. If one desires a more active
monitoring that detects changes in a bank's risk, then maturity does matter and shorter is
better. The subdebt spread becomes highly sensitive only for maturities shorter than two years.
Furthermore, these signals are robust to noise in the sense of varying little with the shape of the
risk-free yield curve.

5.2 Spreads for Floating Rate Debt

Floating rate subordinated debt pays out a �xed spread above a oating benchmark, which we
take as LIBOR. The certainty equivalents of the LIBOR cash ows can be determined, and the
spread can then be determined such that the bond is issued at par. The change in this par spread
over time is the signal that we now investigate. Du�e and Liu (2001) study the term structure of
yield spreads between oating rate and otherwise identical �xed rate bonds. The credit spreads
of the two need not be the same. For example, if the term structure slopes upward, investors
expect that oating rate coupons will increase over time. Default risk, however, also increases
over time. As the later and higher coupons are also the most likely to be lost to default, investors
who hold the oating rate bond must be compensated by a oating point spread that is slightly
larger.

For our �ve banks, the di�erence between par spreads on �xed and oating bonds is small
for all maturities, averaging one-third of a basis point. This con�rms the Du�e and Liu result
that the magnitude of the di�erences is small. Since credit spreads based on oating rate bonds
are so similar to those based on �xed rates, the signaling mechanisms of the two are similar and
the implications in the previous section follow through.

5.3 Spreads for Putable Fixed Coupon Bonds

We now consider the proposal that calls for banks issuing American style putable �xed coupon
bonds, where the coupon is set so the bond is initially priced at par. If the performance of
the put is guaranteed regardless of the condition of the bank, then the putable bond provides
a money-back guarantee. This assumption is unreasonable since the conditions under which
the put might be optimally exercised include states of nature where the credit condition of the
bank has deteriorated, and in these states of nature, the �rm may not be able to deliver on its
obligations. In light of this, we assume that if the bond defaults before the option is exercised,
the option is made worthless. That is, the put option is an American put option which is knocked
out if the bank defaults.

Notice that if the put option was a European option, its value would not depend on the
recovery rate at all. Payouts at the expiry date would only be obtained if no default occurred
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over the entire period. In contrast, for the American knockout, the decision to put the bond or
not is based on the current market price of the defaultable bond, and that value is inuenced
by the recovery value of the bond.

To price this contract, we simulate the hazard rate and the short interest rate dynamics, and
based on the hazard rate establish whether a default occurs in a particular period. If a default
occurs, then the option is worthless, and a payout of $0 is assigned to the path thereafter. If no
default occurs, we compute the risky bond price based on the state variables and the intrinsic
value of the put option. We then use these values in the Longsta�/Schwartz simulation model.8

Of course, the putable bond may be exercised because interest rates have increased. Hence,
the put feature does not provide a claim that precisely targets credit risk, and as a result the
option adjusted spread for this instrument will clearly be a�ected by the riskless yield curve. In
this regard, the correlation e�ects between the credit spread and interest rates become important.

Because the putable bond may be exercised because of changes in the risk free rate, maturity
becomes a larger factor in the spread, as a longer maturity gives more time for interest rates to
move enough to make the option exercisable. Figure 8 shows the credit spread for the di�erent
banks in our sample. Maturity di�erences are often greater than 10 basis points, and in one
case, greater than 20 basis points. It now becomes possible to misclassify banks if maturity is
ignored.

The serious concern about putable coupon bonds is that they will be exercised when the
risk-free rate falls, not only when the credit spread rises. The initial term structure becomes
important because it inuences the direction rates will move and thus the probability that the
put will be exercised. In our case, however, the actual e�ect is quite small: the change is a
few basis points at most. The problem shows up much more when the e�ect of the change in
interest rate volatility is plotted, as in �gure 9. Particularly for the longer maturities, the e�ect
of increasing interest rate volatility is easily more than 50 basis points. The added volatility
makes the put more valuable, and thus the observed credit spread decreases. While the volatility
has no direct e�ect on the pure credit spread, to the extent that credit shocks are correlated
with interest rate shocks, the higher volatility makes the bank debt riskier. The put not only
adds noise both to the exercise of the option and to the value of the spread, it also directly
masks the risk signal: the spread decreases as the bank gets riskier.

5.4 Spreads for Putable Floating Rate Bonds

The �nal proposal that we consider argues for the creation of putable oating rate bonds. As in
the previous case, we assume that the put contracts are made worthless if they are not exercised
prior to default. The advantage of using a oating rate bond is that at reset dates, the discount
from par is fully attributed to credit risk. If credit risk has remained the same, then the price
of the bond at reset dates fully reects credit risk, not interest rate risk, and the decision by
bondholders to exercise the put will be based on credit events alone. Figure 10 plots the credit
spreads for putable oating rate bonds.

Attaching the put option to a oating-rate bond removes the inuence of the initial term
structure and of maturity on the credit spread. There is also no longer much of an e�ect

8Actually, when discounting here, it is correct to discount at the riskless rate, not the riskless rate adjusted
for the spread. This is the case because the defaults are explicitly accounted for in the assignment of payouts to
the paths.
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from changes in interest rate volatility. Making the bond oating accomplishes the objective of
removing the inuence of riskfree interest rates on the put.

The possibility still remains, though, that the put may drive the credit spread in perverse
directions if the credit spread process changes. The e�ects, however, are quite negligible. Figures
11a, 11b, and 11c isolate put's e�ect on the spread from changes in �1, �2, and �3. These never
even reach one-half of a basis point. In part, this is because for our sample, the put was out
of the money, and not worth much. Had it been more valuable, the e�ects would have been
larger|but our calibration does establish that for a representative time, the put has little e�ect
on the spread. One further consequence is that the sensitivity of the spread to changes in the
state variable (instantaneous spread) is little a�ected by the put, as demonstrated by �gure 12.

6 Comparing the Proposals

In order for subordinated debt to increase market discipline, it must provide the correct signals
to supervisors. An important criterion for evaluating di�erent proposals must be information
content|how hard will it be to extract the correct information about bank risk from subor-
dinated debt? One straightforward signal is the credit spread|the spread between yields on
subordinated debt and comparable risk-free rates (in our paper, LIBOR).

Looking at the spread is the standard approach, but not the only one. Some studies have
used option valuation techniques to back out a risk measure from subordinated debt prices
(Gorton and Santomero (1990), Schellhorn and Spellman (1996)), and often emphasize the
nonlinear relation between risk and credit spread, as higher risk may correspond to either larger
or smaller spreads (Bliss (2000) also stresses this). Though our approach is in some ways
complementary to this branch of the literature in that we work directly with an asset pricing
model, we concentrate on spreads rather than on implied volatilities for several reasons. First,
the negative relation between risk and credit spread, though theoretically possible, has not been
observed in subordinated debt prices. Furthermore, such models, based on the fundamental
approach to pricing risky debt, are notoriously unreliable at pricing credit spreads, and this calls
into question their mapping between risk and prices. Separate from the academic aspects of the
problem, it is our view that proposals using spreads are more likely to be adopted by regulators,
either because the proposals speci�cally mandate spreads (as in Calomiris), or because the
regulators would be reluctant to commit to a speci�c model for backing out implied risk, perhaps
because it would be less veri�able than a publicly observable credit spread.

From the perspective of information contained in the credit spread, there is reason to be
optimistic about standard, �xed coupon subordinated debt. Credit spreads de�nitely vary be-
tween banks|in some cases by over 50 basis points in our small sample. Furthermore, some of
the more obvious sources of noise do not seem important. Neither changes in maturity or in
the risk-free term structure a�ect credit spreads substantially. Nor do shifts in the volatility of
interest rates matter much for the credit spread. As far as one can generalize from our limited
sample, while supervisors should be aware of the slope of the yield curve and the bond's matu-
rity, those factors are unlikely to a�ect the risk ranking among banks. The credit spread reects
risk, not today's yield curve.

The downside is that credit spreads are not very sensitive to changes in the instantaneous
credit spread. We argue below that this is not a disadvantage, but it does point out that sub
debt is unlikely to be a reliable indicator of high frequency variation in bank quality.

15



Floating rate subordinated debt behaves almost identically to �xed coupon debt. To the
extent that some banks seem to prefer oating rate subdebt (Sironi (2001) �nds 25 percent of
bank sub debt in Europe is oating), the regulatory burden might be decreased if banks are
allowed a choice between �xed and oating debt. Most proposals specify �xed coupon debt, but
there seems to be no good reason for this.

Making debt putable has been a controversial suggestion. A particular concern is the pos-
sibility that �xed coupon debt is put for reasons other than credit events. We don't directly
address this problem, but our results suggest that this is a serious problem. Maturity has more
of an impact, and it becomes harder to rank banks. Even less encouraging for proponents, inter-
est rate volatility matters greatly, even when the put is out of the money. Thus, a �xed coupon
bond with a put attached fails in providing both direct and indirect discipline: adding the put
means the market will discipline the bank at inappropriate times, and also makes it harder to
extract information from the credit spread. The �rst of these concerns has been expressed for
years, but we con�rm the quantitative signi�cance of the problem.

Making the putable debt oating avoids many problems of �xed rate debt, and maturity and
term structure disappear as inuences on the credit spread. While a potential disadvantage of
putable oating debt could lie in its response to the variability of the credit spread, we �nd this
is not the case. Adding the put to oating debt does not distort the credit spread signal. While
our conclusion in part depends on our sample, it at a minimum establishes a base for a range of
parameters.

6.1 Broader Lessons: Processes, Pricing, and Proposals

One important contribution an asset pricing approach brings to the study of mandatory sub-
ordinated debt proposals is so simple and obvious that it is likely to be overlooked. It focuses
on the importance of the stochastic process driving the combined default/recovery probability.
The spread on a risky bond depends on several factors. Today's short spread, or instantaneous
default probability, measures only one aspect of bank risk. Longer term spreads depend on
other things as well. The mean reversion parameter determines how fast a bank will recover
from today's problems. The variance of the process determines the chance of future bad shocks.
The correlation with interest rates determines a bank's sensitivity to interest rates, including
whether increases or decreases hurt the bank more. It is important to keep these parameters
conceptually separate. A bank with little risk of failing in the very near future (low s(0)) may
be very vulnerable to higher interest rates in the future.

A possible downside to subordinated debt became apparent in our simulations. The credit
spread was also relatively insensitive to several variables that should have mattered more, such
as s(0), the instantaneous credit spread (compounding default probability and recovery rate).
The lesson is that the probability of failure between now and the end of the day is not the only,
nor even the dominant, factor in pricing a risky bond. Rather, the entire process matters, since
it is the expected future evolution of s(0) that governs the default probability over the next ten
years. A case in point is Wachovia|despite a relatively high instantaneous default probability,
it has the lowest credit spread, primarily because the shock reverts quickly (low �1) to a low
mean (low �0). Bankers Trust has a high spread because it reverts quickly to a high mean (high
�1 with high �0).

This has important implications for interpreting credit spreads. The bonds, having payo�s
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stretching over several years, provide information about default probabilities over several years|
they provide average, rather than point-in-time data. For most purposes that is preferable|we
want to know if the bank is going to be around next year, and are less interested in the precise
odds that it won't be around tomorrow.

The probability of failure over time|and the consequent credit spread|depends on the sto-
chastic process for s(t), not merely its current value. That means the mean reversion parameter
�1 matters, as it tells, roughly, how long the bad shock will persist. A variable that turns out
to be quantitatively important is �3, which has a large inuence on the correlation between
credit shocks and interest rate shocks. This parameter may be a�ected by banks' strategies|
how hedged they are, and the extent to which they diversify and invest in cyclically volatile
industries.

Of course there are reasons for being skeptical of results so far: they are for a limited number
of banks calibrated at one particular date. The model attributes all of the spread to credit risk,
ignoring liquidity premiums or tax consequences. Yet despite these drawbacks, which we hope to
address in future work, we feel our calibration provides reasonable numbers that help assess the
relative merits of mandatory subordinated debt proposals. Beyond the speci�c results, though,
we have set up a framework that can capture, or at least raise the issue, of the trade-o�s inherent
in designing these instruments. Any attempt to balance the competing objectives needs to assess,
and preferably assess quantitatively, the e�ects of the contract provisions. Only by matching
security design with the desired objectives will a useful subordinated debt program emerge.
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Appendix

Proof of Proposition 1

Substituting equations (2) and (3) into equation (1), the forward rate can be written as

f(t; T ) = f(t� 1; T ) +
2X

n=1

�fn(t� 1; T )�t+
2X

n=1

�fn(t� 1; T )
p
�tZ

(n)
t

= f(0; T ) +
2X

n=1

t�1X
j=0

�fn(j; T )�t+
2X

n=1

t�1X
j=0

�fn(j; T )
p
�tZ

(n)
j+1;

where �fn(t; T ); n = 1; 2 is the drift term for each factor, given in equation (4).
Substituting the volatility functions in equations (2) and (3) into the drift term, and de�ning

a1 = e��1�t; a2 = e��2�t, we have, upon simpli�cation:

�f1(t; T ) =
b21a

T�t
1 �t

2(a1 � 1)
(aT�t1 + aT�t+11 � 2a1) (16)

�f2(t; T ) =
b22a

T�t+1
1 �t

1� a1
� 1 + a1
2(1� a1)

b22a
2(T�t)
1 �t

+
c22a

T�t+1
2 �t

1� a2
� 1 + a2
2(1� a2)

c22a
2(T�t)
2 �t

+
c2b2((1� a2)a

T�t
2 a1 + (1� a1)a

T�t
1 a2 + (a1a2 � 1)(a1a2)

T�t)�t

(1� a1)(1� a2)
(17)

From the above calculation we see that the drift term �f (t; T ) of the forward rate is a deter-
ministic function of t and T . Let h(t; T ) represent this function. That is:

h(t; T ) =
2X

n=1

tX
j=0

�fn(j; T )�t: (18)

Then:

f(t; T ) = f(0; T ) +
2X

n=1

t�1X
j=0

�fn(j; T )�t +
2X

n=1

t�1X
j=0

�fn(j; T )
p
�tZ

(n)
j+1

= f(0; T ) + h(t� 1; T ) + b1a
T�t
1 �1(t) + b2a

T�t
1 �2(t) + c2a

T�t
2 �3(t);

where,

�1(t) =
t�1X
j=1

at�j1

p
�tZ

(1)
j+1

�2(t) =
t�1X
j=1

at�j1

p
�tZ

(2)
j+1

�3(t) =
t�1X
j=1

at�j2

p
�tZ

(2)
j+1:
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For T = t, we have

r(t) = f(0; t) + h(t� 1; t) + b1�1(t) + b2�2(t) + c2�3(t): (19)

Further, we also have

r(t+ 1) = f(0; t+ 1) + h(t; t+ 1) + b1�1(t+ 1) + b2�2(t+ 1) + c2�3(t+ 1): (20)

Notice

�1(t+ 1) = a1�1(t) + a1
p
�tZ

(1)
t+1

�2(t+ 1) = a1�2(t) + a1
p
�tZ

(2)
t+1

�3(t+ 1) = a2�3(t) + a2
p
�tZ

(2)
t+1:

Substituting these terms into the equation (20) we obtain

r(t+ 1) = f(0; t+ 1) + h(t; t+ 1) + a1(r(t)� f(0; t)� h(t� 1; t))

+(a2 � a1)c2�3(t) + b1a1
p
�tZ

(1)
t+1 + b2a1

p
�tZ

(2)
t+1 + c2a2

p
�tZ

(2)
t+1: (21)

Let `(t) = h(t � 1; t). The exact expression for `(t) can be obtained by substituting in
equations (16) and (17) into equation (18) for T = t to obtain:

`(t) =
t�1X
j=0

[�f1(j; t) + �f2(j; t)]�t

=
b21a

2
1(a

2t
1 � 2at1 + 1)�t2

2(a1 � 1)2
+
1

2
[
b2a1(a

t
1 � 1)�t

(a1 � 1)
+
c2a2(a

t
2 � 1)�t

(a2 � 1)
]2 (22)

The dynamics of the variables r(t) and u(t) then follow by transforming the state variable �3(t),
to u(t) using �3(t) = u(t).

These two state variables also determine the term structure. Reconsider the forward rate
equation, it can be written as:

f(t; T ) = f(0; T ) + h(t� 1; T ) + aT�t1 (b1�1(t) + b2�2(t)) + c2a
T�t
2 �3(t)

= f(0; T ) + h(t� 1; T ) + aT�t1 (r(t)� f(0; t)� h(t� 1; t)) + c2(a
T�t
2 � aT�t1 )ku(t):

This completes the proof of the �rst part of Proposition 1.
Now consider the second part of the Proposition. The riskless discount bond price at time t

can be obtained by induction. For n = 1 the bond price equation leads to P (t; t+ 1) = e�r(t)�t

which is the correct result. Now assume that:

P (t; t+ n) = e�An(t)�Bnr(t)�t�Cnu(t)�t:

Then,

P (t; t+ n+ 1) = e�r(t)�tE[P (t+ 1; t+ n+ 1)]

= e�r(t)�tE[e�An(t+1)�Bnr(t+1)�t�Cnu(t+1)�t]:
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After computing the expectation, we obtain the result.
Proof of Proposition 2

The results can be obtained by induction. When n = 1, G(t; t+ 1) = e�r(t)�t�s(t)�t, which
is correct. Assume G(t; t+ n) = e�

�An(t)� �Bnr(t)�t� �Cnu(t)�t� �Dns(t)�t. Then,

G(t; t+ n+ 1) = e�r(t)�t�s(t)�tE[G(t+ 1; t+ n+ 1)]

= e�r(t)�t�s(t)�tE[e�An(t+1)�Bnr(t+1)�t�Cnu(t+1)�t�Dns(t+1)�t]

= e�(1+Bna1)r(t)�t�(1+Dn�1)s(t)�t�(Bnc1+Cna2)u(t)�t

�e�An(t+1)�Bn(f(0;t+1)+l(t+1)�a1(f(0;t)+l(t)))�t�Dn(�0+�2�23)�t

�E[e�Bnd1(�t)3=2�t+1�Cnd2(�t)3=2�t+1�Dn�2�t(�2t+1�2�3�t+1)]

Let

�t+1 = �3�t+1 +
q
1� �23�t+1; E[�t+1�t+1] = 0

�t+1 = �2�t+1 +
q
1� �22�t+1; E[�t+1�t+1] = 0:

Since E[�t+1�t+1] = �1, E[�t+1�t+1] =
�1��3�2p

(1��23)(1��22)
. Denote �4 = E[�t+1�t+1]. We can write

�t+1 = �4�t+1 +
q
1� �24�t+1; E[�t+1�t+1] = 0. Since E[�t+1�t+1] = 0, and E[�t+1�t+1] = 0 we

have E[�t+1�t+1] = 0. Now we can calculate the expectation using three uncorrelated variables,
�t+1; �t+1; and �t+1. Speci�cally,

E[e�Bnd1�t+1(�t)
3
2�Cnd2�t+1(�t)

3
2�Dn�2�t(�2t+1�2�3�t+1)]

= E[e�Bnd1(�t)
3
2 (�2�t+1+

p
1��22�t+1)�Cnd2(�t)

3
2 (�3�t+1+

p
1��23�t+1)�Dn�2�t(�2t+1�2�3�t+1)]

= E[e�(Bnd1
p

1��22+Cnd2
p
1��23�4)�t+1(�t)

3
2�Cnd2

p
1��23

p
1��24�t+1(�t)

3
2

�e�Dn�2�
2
t+1�t+(2�3�2Dn�(Bnd1

p
�t�2+Cnd2

p
�t�3))�t+1�t]

= e
�t3

2
(Bnd1

p
1��22+Cnd2

p
1��23�4)2+

�t3

2
(Cnd2

p
1��23

p
1��24)2

�e�
1
2
ln(1+2�2Dn�t)+

(Bnd1
p
�t�2+Cnd2

p
�t�3�2�2�3Dn)

2�t2

2(1+2�2Dn�t) :

Eventually, we have

G(t; t+ n+ 1) = e�An+1(t)�Bn+1r(t)�t�Cn+1u(t)�t�Dn+1s(t)�t:

Comparing P (t; t + n) and G(t; t + n), we see that Bn = Bn and Cn = Cn. Hence we can

write G(t; t+ n) = P (t; t+ n)e�Dns(t)�t�En(t):
Actually,

En(t) = An(t)�An(t) = En:

The time-varying parts cancel out in En(t). Therefore,

G(t; t+ n) = P (t; t+ n)e�Dns(t)�t�En

.
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Table 1: Percentage Errors in the Estimated Prices of Swaptions�

Contract Market Theoretical Di�erence Market Theoretical % Error
Vol. Vol. Price Price

6mx1 15.5 15.6414 0.1414 0.002486 0.002508 0.9111
6mx2 16.1 16.5372 0.4372 0.005185 0.005326 2.7125
6mx3 16.1 16.4354 0.3354 0.007705 0.007865 2.0807
6mx4 16.1 16.1456 0.0456 0.010104 0.010132 0.2829
6mx5 16.1 15.8067 -0.2933 0.012377 0.012152 -1.8196

1yx1 17.1 16.6335 -0.4665 0.003937 0.00383 -2.7218
1yx2 16.8 16.9068 0.1068 0.007665 0.007714 0.6339
1yx3 16.4 16.6756 0.2756 0.011018 0.011203 1.6767
1yx4 16 16.3184 0.3184 0.014036 0.014314 1.9858
1yx5 15.8 15.9555 0.1555 0.016919 0.017086 0.9821

2yx1 17.7 16.9607 -0.7393 0.00565 0.005415 -4.1566
2yx2 16.6 16.9269 0.3269 0.010355 0.010558 1.9602
2yx3 16.2 16.5905 0.3905 0.014806 0.015161 2.3995
2yx4 15.9 16.2216 0.3216 0.018881 0.019262 2.014
2yx5 15.6 15.7694 0.1694 0.022647 0.022892 1.0817

3yx1 17.6 17.0755 -0.5245 0.006553 0.006359 -2.9582
3yx2 16.5 16.8938 0.3938 0.012001 0.012286 2.37
3yx3 16.1 16.5515 0.4515 0.017099 0.017575 2.7852
3yx4 15.6 16.0721 0.4721 0.021613 0.022263 3.0069
3yx5 15.2 15.6692 0.4692 0.025636 0.026422 3.0683

4yx1 17.3 16.2614 -1.0386 0.007078 0.006657 -5.9486
4yx2 16.2 16.0363 -0.1637 0.012884 0.012755 -1.0019
4yx3 15.7 15.5608 -0.1392 0.018342 0.01818 -0.8792
4yx4 15.2 15.1738 -0.0262 0.023038 0.022999 -0.1713
4yx5 14.7 14.8149 0.1149 0.027062 0.027272 0.7757

5yx1 17 15.7716 -1.2284 0.007323 0.0068 -7.1486
5yx2 15.9 15.3364 -0.5636 0.013473 0.013 -3.5094
5yx3 15.3 14.9874 -0.3126 0.018902 0.018519 -2.0237
5yx4 14.7 14.6451 -0.0549 0.023502 0.023415 -0.3699
5yx5 14.3 14.279 -0.021 0.027786 0.027745 -0.1457

� Table 1 shows the percentage errors in swaption prices for September 30, 1999. The optimiza-
tion procedure is described in the text.
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Table 2: Comparisons of Fitted and Actual Bond Prices and Yields �

Bank Coupon Maturity IssueDate Price Pred Price % Error Yield Pred Yield Di�(bp)

Chase(BHC) 6 2/15/09 8/15/99 92.16 90.94 -1.32 8.98 9.36 38.74
6.375 2/15/08 8/15/98 95.51 94.36 -1.20 8.62 9.02 39.56
6.375 4/1/08 10/1/98 95.51 96.63 1.17 7.30 6.98 -32.02
7.125 2/1/07 8/1/97 99.98 99.86 -0.12 8.00 8.05 4.44
7.125 6/15/09 12/15/97 99.98 99.64 -0.34 7.84 7.93 9.07
7.25 6/1/07 12/1/97 101.1 101.65 .55 7.72 7.55 -17.67
7.5 2/1/03 8/1/93 102.03 102.62 0.58 7.94 7.40 -53.97
8.625 5/1/02 11/1/92 104.36 107.53 3.03 3.60 0.90 -269.50

J.P. Morgan 6 1/15/09 7/15/99 91.65 91.03 -0.67 8.92 9.12 19.16
6.25 12/15/05 6/15/96 95.92 96.37 0.47 8.45 8.26 -18.93
6.25 1/15/09 7/15/94 93.26 92.77 -0.53 8.72 8.87 15.10
6.7 11/1/07 5/1/98 97.21 98.09 0.91 7.71 7.44 -26.88
6.875 1/15/07 7/15/97 98.09 98.32 0.23 8.28 8.20 -8.45
7.25 1/15/02 7/15/92 101.14 102.13 0.98 8.66 7.19 -146.40
7.625 9/15/04 3/15/95 102.67 101.85 -0.80 7.11 7.62 50.76

Wachovia 5.625 12/15/08 6/15/99 90.11 90.52 0.46 8.77 8.64 -12.78
6.15 3/15/09 9/15/99 93.52 92.41 -1.18 8.94 9.30 35.50
6.25 8/4/08 2/4/99 94.42 94.30 -0.13 8.26 8.30 3.87
6.375 4/15/03 10/15/93 98.98 101.33 2.38 8.05 6.57 -147.85
6.375 2/1/09 8/1/94 95.06 94.84 -0.23 8.42 8.49 6.67

Bank One 6 2/17/09 8/17/99 91.38 90.17 -1.32 9.24 9.63 38.86
6.125 2/15/06 8/15/96 94.44 94.33 -0.12 9.57 9.63 5.26
6.375 1/30/09 7/30/94 93.73 93.10 -0.68 8.82 9.01 19.59
7.25 8/1/02 2/1/93 101.59 101.58 -0.01 6.27 6.27 0.69
7.6 5/1/07 11/1/97 101.8 103.78 1.94 7.68 7.07 -61.19
7.625 1/15/03 7/15/93 101.88 103.01 1.11 7.91 6.91 -99.19
8.74 9/15/03 3/15/92 105.82 105.61 -0.20 8.80 8.98 17.56

Bankers Trust 6.7 10/1/07 4/1/98 95.88 96.42 0.56 7.93 7.76 -16.36
7.125 7/31/02 1/31/93 101.1 100.38 -0.71 6.67 7.52 84.35
7.125 3/15/06 9/15/96 98.56 97.03 -1.55 9.24 9.96 71.68
7.5 1/15/02 7/15/92 101.52 101.90 0.37 8.45 7.89 -56.03
8.125 4/1/02 10/1/95 103.04 105.74 2.62 4.02 1.85 -216.85

� Table 2 shows the actual and �tted prices for all subordinated debt bond issues as on September
30 1999.
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Table 3: Parameter Estimates for the Credit Spread Models for Each Bank

Chase(BHC) JP Wachovia Bank One BankersTr

s0 0.00704 0.007054 0.007156 0.007497 0.00745
�0 0.001917 0.000486 0.000722 0.001088 0.006468
�1 0.289229 0.251739 0.313746 0.536976 0.113232
�2 0.001221 0.004444 0.002075 0.001884 0.002842
�3 0.885446 0.031403 0.153819 0.348979 0.137815

�r;s -0.781406 -0.044367 -0.212562 -0.442567 -0.1913
SSE 0.001454 0.000343 0.000733 0.000727 0.001022
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The volatility structure of forward rates was estimated using data on the LIBOR term structure
and concurrent swaption prices as discussed in the text.  The estimated parameters are
κ1=0.044978; κ2=3.407608; b1=0.00014383; b2=-0.012441; c2=0.018797.

The credit spreads for the five banks at maturities from 1 to 5 years are based on the model
described in the text and the parameters in table 3.

Figure 1: Volatilities of Forward Rate
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Figure 2: Zero Credit Spreads

30
40
50
60
70
80
90

100
110
120

0 1 2 3 4 5 6
Maturity (year)

B
as

is
 P

oi
nt

s

Chase(BHC) JP Wachovia

Bank One Bankers Tr.



29

Figure 3.  Changes in Zero Credit Spreads as Parameters Vary

Panels a, b, and c show the term structure of credit spreads for different values of the parameters.
α1=0.289220, α1Lo=0.1, α1Hi=0.6.  α2=0.001221, α2Lo=0.0008, α2Hi=0.005, α3=0.885446,
α3Lo=0.003, α3Hi=0.9.  The base values are the parameters for Chase Manhattan.
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b: Zero spread, α2
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c: Zero spread, α3
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S(0) change in the instantaneous spread.  The change in credit spread given a unit change in s(0),
for maturities ranging from 6 months to 10 years.  The same values are used for α1 as in figure 3.

The credit spread for coupon bonds at par of maturities from 1 to 9 years, based on the parameters
in table 3.

Figure 5: Credit Spread for Par Risky Coupon Bond
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Figure 4: Sensitivity of the Credit Sspread to s(0)
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The credit spread is plotted against maturity for the Chase Manhattan parameters of table 3,
varying the shape of the underlying risk-free term structure.  Actual denotes the actual term
structure for September 30, 1999.  Flat denotes a constant 5% term structure. The downward
sloping yield curve is given by (5 � 0.4k)% for maturity k, and the upward sloping by
(5 + 0.4k)%.

The change in the credit spread for a coupon bond at par, with a maturity of 5 years, calculated
for different banks using the parameters given in table 3.

Figure 6: Credit Spread as Riskless Shape Varies
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Figure 7: Change of Credit Spread with Change in s(0)
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The coupon is set so that the bond is initially priced at par, given the American put, which is
knocked out if the bank defaults before the bond matures.  The bond is puttable at par.  The
option is priced using the Longstaff/Schwartz simulation method described in the text.

Using Chase Manhattan parameters from table 3, the volatility of the risk-free interest rate varies
from 0.026358 to 0.106358.

Figure 8: Credit Spread for Knockout Puttable Risky 
Coupon  Bond
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Figure 9: Change of Credit Spread with Change in 
Interest Rate Volatility, by Maturity 
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The initial coupon is set so that the bond is initially priced at par, given the American put, which
is knocked out if the bank defaults before the bond matures.  The bond is puttable at par.  The
option is priced using the Longstaff/Schwartz simulation method described in the text.

Figure 10: Credit Spread for Par Floating Rate Risky 
Bond with Knockout Put Option
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Figure 11.  Changes in Credit Spread for Puttable Floating Rate Bond
with Changes in Credit Process Parameters

Panels a, b, and c show the change in the credit spread for floating rate bonds with a knockout put
for maturities 2, 5, and 9 years for various values of the parameters α1, α2, and α3 of the credit
spread process.  The other parameters as for Chase Manhattan in table 3.
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0

0.01

0.02

0.03

0.04

0.05

0.06

-1.5 -1 -0.5 0 0.5 1 1.5
α3

B
as

is
 P

oi
nt

s

2yr 5yr 9yr



35

Figure 12.  Sensitivity of Credit Spread for Puttable Floating Rate Bonds
to Changes in the Instantaneous Credit Spread s(0)

The change in credit spread given a unit change in s(0), for maturities ranging from 2 years to 9
years.  The same values are used for α1 as in figure 3.
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